Which relationships have the same constant of proportionality between yyy and xxx as the equation y=\dfrac{1}{2}xy= 2 1 ​ xy, equals, start fraction, 1, divided by, 2, end fraction, x? Choose 3 answers: Choose 3 answers:

Respuesta :

Answer:

A & B

Step-by-step explanation:

See attachment for complete question

Given

[tex]y = \frac{1}{2}x[/tex]

Analyzing the given options

Option A:

[tex]6y = 3x[/tex]

Divide both sides by 6

[tex]\frac{6y}{6} = \frac{3x}{6}[/tex]

[tex]y = \frac{3x}{6}[/tex]

[tex]y = \frac{1}{2}x[/tex]

This is true for the given expression:

Option B:

From the graph:

x = 2, when y = 1

x = 4, when y = 2

Solving for the slope:

[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

[tex]m = \frac{2 -1}{4 - 2}[/tex]

[tex]m = \frac{1}{2}[/tex]

The equation is then calculated as:

[tex]y - y_1 = m(x - x_1)[/tex]

[tex]y - 1 = \frac{1}{2}(x - 2)[/tex]

[tex]y - 1 = \frac{1}{2}x - 1[/tex]

Add 1 to both sides

[tex]y - 1 +1 = \frac{1}{2}x - 1 + 1[/tex]

[tex]y = \frac{1}{2}x[/tex]

This is also true for the given expression.

Option C:

From the graph:

x = 2, when y = 4

x = 4, when y = 8

Solving for the slope:

[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

[tex]m = \frac{8 - 4}{4 - 2}[/tex]

[tex]m = \frac{4}{2}[/tex]

[tex]m =2[/tex]

The equation is then calculated as:

[tex]y - y_1 = m(x - x_1)[/tex]

[tex]y - 4 = 2(x - 2)[/tex]

[tex]y - 4 = 2x - 4[/tex]

Add 4 to both sides

[tex]y - 4 + 4= 2x - 4 + 4[/tex]

[tex]y = 2x[/tex]

This isn't true for the given expression.

Option (D):

From the table:

x = 2, when y = 1

x = 4 when y = 3

Solving for the slope:

[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

[tex]m = \frac{3 - 1}{4 - 2}[/tex]

[tex]m = \frac{2}{2}[/tex]

[tex]m = 1[/tex]

The equation is then calculated as:

[tex]y - y_1 = m(x - x_1)[/tex]

[tex]y - 1 = 1 * (x - 2)[/tex]

[tex]y - 1 = x - 2[/tex]

[tex]y = x - 2 +1[/tex]

[tex]y = x - 1[/tex]

This isn't true for the given expression.

Ver imagen MrRoyal

Answer:

A,B, and E

Step-by-step explanation:

trust me.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE