Compute a 99% confidence interval for the mean weight of toxic substance per gram of mold culture. State the assumption you make about the population.

Respuesta :

Complete Question

The complete question is shown on the first uploaded image

Answer:

The  99% confidence interval is  [tex]2.4309 <  \mu <   4.9328[/tex]

Step-by-step explanation:

From the question we are told that

   The data is   3, 2,5, 3, 2, 6, 5,4.5, 3, 3, and 4

    The sample size is  n  =  11

Generally the sample mean is mathematically represented as

     [tex]\= x  =  \frac{\sum x_i}{n}[/tex]

=>  [tex]\= x  =  \frac{3+ 2+5+ \cdots +4 }{11}[/tex]

=>  [tex]\= x  =  3.6818 [/tex]

Generally the sample standard deviation  is mathematically represented as

    [tex]\sigma  =  \sqrt{\frac{\sum [ x_i - \= x ] }{n} }[/tex]

=>  [tex]\sigma  =  \sqrt{\frac{[ 3 - 3.6818 ]^2 +[ 2 - 3.6818 ]^2 + \cdots + [ 4 - 3.6818 ]^2   }{11} }[/tex]

=>  [tex]\sigma  =  1.3091[/tex]

Given that the confidence interval is 99% then the level of significance is mathematically represented as

         [tex]\alpha= (100 - 99) \%[/tex]

=>      [tex]\alpha= 0.01[/tex]

Given  that the sample size is small we will making use of t distribution table  

Generally from the t distribution table the critical value  of   at a degree of freedom of  is  

   [tex]t_{\frac{\alpha }{2} , 10 } =3.16927267   [/tex]

Generally the margin of error is mathematically represented as  

      [tex]E =  3.16927267  *  \frac{1.3091 }{\sqrt{11} }[/tex]

     [tex]E = 1.251[/tex]

Generally 99% confidence interval is mathematically represented as  

      [tex]3.6818 -1.251 <  p < 3.6818 + 1.251 [/tex]

=>    [tex]2.4309 <  \mu <   4.9328[/tex]

Ver imagen okpalawalter8
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE