Answer:
8[tex]x^{6}[/tex] + 12[tex]x^{4}[/tex]y² + 6x²[tex]y^{4}[/tex] + [tex]y^{6}[/tex]
Step-by-step explanation:
This can be expanded using the binomial theorem or by multiplying the factors.
In case you are not aware of the theorem, will do multiplication.
Given
(2x² + y²)³ = (2x² + y²)(2x²+ y²)(2x² + y²)
Expanding the second pair of factors
Each term in the second factor is multiplied by each term in the first factor, that is
2x²(2x² + y²) + y²(2x² + y²) ← distribute both parenthesis
= 4[tex]x^{4}[/tex] + 2x²y² + 2x²y² + [tex]y^{4}[/tex] ← collect like terms
= 4[tex]x^{4}[/tex] + 4x²y² + [tex]y^{4}[/tex]
Now multiply this by the remaining factor (2x² + y²)
(2x² + y²)(4[tex]x^{4}[/tex] + 4x²y² + [tex]y^{4}[/tex])
= 2x²(4[tex]x^{4}[/tex] + 4x²y² + [tex]y^{4}[/tex]) + y²(4[tex]x^{4}[/tex] + 4x²y² + [tex]y^{4}[/tex]) ← distribute both parenthesis
= 8[tex]x^{6}[/tex]+ 8[tex]x^{4}[/tex]y² + 2x²[tex]y^{4}[/tex] + 4[tex]x^{4}[/tex]y² + 4x²[tex]y^{4}[/tex] + [tex]y^{6}[/tex] ← collect like terms
= 8[tex]x^{6}[/tex] + 12[tex]x^{4}[/tex]y² + 6x²[tex]y^{4}[/tex] + [tex]y^{6}[/tex]