Respuesta :

Answer:

50 units

Step-by-step explanation:

Find the number of units x that produces the minimum average cost per unit C in the given equation.

C = 0.001x³ + 5x + 250

unit cost f(x) = C/x

= 0.001x³/x + 5x/x+ 250/x

f(x) = 0.001x² + 5 + 250/x

f'(x) = 0.002x - 250/x²

We equate the first derivative to zero

0.002x - 250/x² = 0

0.002x = 250/x²

Cross Multiply

0.002x × x² = 250

0.002x³ = 250

x³ = 250/0.002

x³ = 125000

x = 3√(125000)

x = 50 units

Therefore, the number of units x that produces the minimum average cost per unit C is 50 units.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE