The current is suddenly turned off. How long does it take for the potential difference between points a and b to reach one-half of its initial value

Respuesta :

Complete Question

The complete  question is shown on the first uploaded image

Answer:

Explanation:

From the question we are told that

     The original voltage is  [tex]V_o[/tex]

     The new voltage is [tex]V  =\frac{V_o}{2}[/tex]

     The capacitance is  [tex]C = 150\ nF = 150 *10^{-9} \  F[/tex]

     The first resistance is  [tex]R_i =  26 \Omega[/tex]

      The second resistance is [tex]R_E =  200 \Omega[/tex]

Generally the equivalent resistance is  

        [tex]R_e =  R_1 + R_E[/tex]

=>     [tex]R_e =  26 +200 [/tex]

=>     [tex]R_e = 226 \ \Omega [/tex]

Generally the time constant is mathematically represented as

     [tex]\tau  =  RC[/tex]

=>  [tex]\tau  =  226 * 150 *10^{-9}[/tex]

=>  [tex]\tau  =  3.39 *10^{-5} \  s [/tex]

Generally the voltage is mathematically represented as

    [tex]V =  V_o  e^{-\frac{t}{\tau} }[/tex]

=>   [tex]\frac{V_o}{2} =  V_o  e^{-\frac{t}{\tau} }[/tex]

=>   [tex]0.5 =    e^{-\frac{t}{\tau} }[/tex]

=>   [tex]ln(0.5) =    {-\frac{t}{ 3.39 *10^{-5} } }[/tex]

=>  [tex]ln(0.5)   * 3.39 *10^{-5}  =   -t [/tex]

=>  [tex]t = 2.35*10^{-5} \  s  [/tex]

Ver imagen okpalawalter8
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE