Consider the rechargeable battery: Zn(s)0ZnCl (aq)7Cl2(aq)0Cl (l)0C(s) (a) Write reduction half-reactions for each electrode. From which electrode will electrons flow from the battery into a circuit if the electrode potentials are not too different from E 8 values

Respuesta :

Complete Question

Consider the rechargeable battery: [tex]Zn(s)||ZnCl _{(aq)}||Cl_2_{(aq)}|Cl_2 (l)|C_{(s)}[/tex]

(a) Write reduction half-reactions for each electrode. From which electrode will electrons flow from the battery into a circuit if the electrode potentials are not too different from [tex]E^o[/tex] values

(b)

if the battery delivers a constant current of [tex]1 .00 *10^{3} \  A[/tex] for 1.00 h , how many kg of [tex]Cl_2[/tex] will be consumed

Answer:

a

    At the anode

           [tex]Zn^{2+} + 2e^{-}  \to  Zn_{s} \ \ \  E^o  =  -0.762 V[/tex]

   At the cathode

          [tex]Cl_2 _{(l)} +  2e^{-}  \to 2Cl^{-} _{aq} \ \ \ \ E^o =  1.396 V[/tex]

b

The value  is  [tex]mCl  =  1.32583 \ kg  [/tex]

Explanation:

Generally the  half-reactions for each electrode is mathematically represented as

   At the anode

           [tex]Zn^{2+} + 2e^{-}  \to  Zn_{s} \ \ \  E^o  =  -0.762 V[/tex]

   At the cathode

          [tex]Cl_2 _{(l)} +  2e^{-}  \to 2Cl^{-} _{aq} \ \ \ \ E^o =  1.396 V[/tex]

Generally  from the question we are told that  

    The current is   [tex]I =  1.00 *10^{3} \ A[/tex]

     The time is  [tex]t =  1.00\  h= 3600[/tex]

Generally the quantity of  charge consumed is  

      [tex]Q = It[/tex]

=>    [tex]Q = 1.00 *10^{3} *  3600 [/tex]

=>    [tex]Q = 3.6 *10^{6} \  C  [/tex]

Generally the number of moles of electron consumed is  

      [tex]n =  \frac{Q}{F}[/tex]

Here F is the faradays constant with value  [tex]F =  (96500C/mole \ e-)[/tex]

So

         [tex]n =  \frac{ 3.6 *10^{6} }{96500}[/tex]

=>      [tex]n = 37.3 \  moles [/tex]

Generally the number of moles of   [tex]Cl_2[/tex] consumed is mathematically represented as

        [tex]nCl = \frac{1}{2}  * n[/tex]

=>      [tex]nCl = \frac{1}{2}  * 37.3 [/tex]

=>      [tex]nCl = 18.7 \  moles  [/tex]      

Generally the mass of   [tex]Cl_2[/tex] consumed is mathematically represented as

     [tex]mCl  =  nCl  *  Z[/tex]

Here Z is the molar mass of  [tex]Cl_2[/tex] is  Z  = 70.9 g/mole

So

      [tex]mCl  =  18.7  *  70.9 [/tex]

=>   [tex]mCl  =  18.7  *  70.9 [/tex]

=>   [tex]mCl  =  1325.83 \ g  [/tex]

=>  [tex]mCl  =  1.32583 \ kg  [/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE