Answer:
7.71 × 10⁻⁴ M/s
Explanation:
The initial rate of the reaction can be expressed by using the formula:
[tex]\dfrac{\Delta [O_2]}{\Delta t}[/tex]
where the number of moles of O₂ = [tex]\dfrac{PV}{RT}[/tex]
where;
Pressue P = 1.00 atm
Volume V =5.74mL = (5.74 /1000) L
Rate R = 0.082 L atm/mol.K
Temperature = 298 K
[tex]= \dfrac{1.00 \ atm \times \dfrac{5.74 }{1000}L}{0.082 \ L \ atm/mol.K \times 298 K}[/tex]
= 2.35 × 10⁻⁴ mol
Δ[O₂] = [tex]\dfrac{moles \ produced - initial \ mole}{\dfrac{5.08 }{1000}L }[/tex]
Δ[O₂] = [tex]\dfrac{2.35 \times 10^{-4} M - 0 M}{\dfrac{5.08 }{1000}}[/tex]
Δ[O₂] = 0.04626 M
The initial rate = [tex]\dfrac{\Delta [O_2]}{\Delta t}[/tex]
= [tex]\dfrac{0.04626}{60}[/tex]
= 7.71 × 10⁻⁴ M/s