Answer:
The answer is 5³.
Step-by-step explanation:
You have to apply Indices Law :
[tex] {a}^{m} \times {a}^{n} ⇒ {a}^{m + n} [/tex]
[tex] {a}^{m} \div {a}^{n}⇒ {a}^{m - n} [/tex]
[tex] { ({a}^{m} )}^{n} = {a}^{mn} [/tex]
So for this question :
[tex]( {( {5}^{2}) }^{3} \times {5}^{4} ) \div {5}^{7} [/tex]
[tex] = ( {5}^{6} \times {5}^{4} ) \div {5}^{7} [/tex]
[tex] = {5}^{10} \div {5}^{7} [/tex]
[tex] = {5}^{3} [/tex]