Answer:
[tex]d = 5\sqrt{13}[/tex]
Step-by-step explanation:
Distance Formula: [tex]d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Simply plug in the 2 coordinates into the distance formula to find distance d:
[tex]d = \sqrt{(-20-(-35))^2+(15-25)^2}[/tex]
[tex]d = \sqrt{(-20+35)^2+(-10)^2}[/tex]
[tex]d = \sqrt{(15)^2+100}[/tex]
[tex]d = \sqrt{225+100}[/tex]
[tex]d = \sqrt{325}[/tex]
[tex]d = 5\sqrt{13}[/tex]