Hello,
a)
[tex]I= \int\limits^{ \frac{\pi}{2} }_0 {sin^n(x)} \, dx = \int\limits^{ \frac{\pi}{2} }_0 {sin(x)*sin^{n-1}(x)} \, dx \\
= [-cos(x)*sin^{n-1}(x)]_0^ \frac{\pi}{2}+(n-1)*\int\limits^{ \frac{\pi}{2} }_0 {cos(x)*sin^{n-2}(x)*cos(x)} \, dx \\
=0 + (n-1)*\int\limits^{ \frac{\pi}{2} }_0 {cos^2(x)*sin^{n-2}(x)} \, dx \\
= (n-1)*\int\limits^{ \frac{\pi}{2} }_0 {(1-sin^2(x))*sin^{n-2}(x)} \, dx \\
= (n-1)*\int\limits^{ \frac{\pi}{2} }_0 {sin^{n-2}(x)} \, dx - (n-1)*\int\limits^{ \frac{\pi}{2} }_0 {sin^n(x) \, dx\\
[/tex]
[tex]I(1+n-1)= (n-1)*\int\limits^{ \frac{\pi}{2} }_0 {sin^{n-2}(x)} \, dx \\
I= \dfrac{n-1}{n} *\int\limits^{ \frac{\pi}{2} }_0 {sin^{n-2}(x)} \, dx \\
[/tex]
b)
[tex]\int\limits^{ \frac{\pi}{2} }_0 {sin^{3}(x)} \, dx \\
= \frac{2}{3} \int\limits^{ \frac{\pi}{2} }_0 {sin(x)} \, dx \\
= \dfrac{2}{3}\ [-cos(x)]_0^{\frac{\pi}{2}}=\dfrac{2}{3} \\
[/tex]
[tex]\int\limits^{ \frac{\pi}{2} }_0 {sin^{5}(x)} \, dx \\
= \dfrac{4}{5}*\dfrac{2}{3} \int\limits^{ \frac{\pi}{2} }_0 {sin(x)} \, dx = \dfrac{8}{15}\\
[/tex]
c)
[tex]I_n= \dfrac{n-1}{n} * I_{n-2} \\
I_{2n+1}= \dfrac{2n+1-1}{2n+1} * I_{2n+1-2} \\
= \dfrac{2n}{2n+1} * I_{2n-1} \\
= \dfrac{(2n)*(2n-2)}{(2n+1)(2n-1)} * I_{2n-3} \\
= \dfrac{(2n)*(2n-2)*...*2}{(2n+1)(2n-1)*...*3} * I_{1} \\\\
I_1=1\\
[/tex]