Answer:
Step-by-step explanation:
The applicable rules of logarithms are ...
log(ab) = log(a) +log(b)
log(a^b) = b·log(a)
__
[tex]\text{a) }\log{6}=\log{(2\cdot 3)}=\log{2}+\log{{3}=\boxed{x+y}[/tex]
[tex]\text{b) }\log{12}=\log{(2^23)}=2\log{2}+\log{3}=\boxed{2x+y}[/tex]
[tex]\text{c) }\log{(1/2)}=\log{2^{-1}}=-\log{2}=\boxed{-x}[/tex]
[tex]\text{d) }\log{60}=\log{(2\cdot 3\cdot 10)}=\log{2}+\log{3}+\log{10}=\boxed{x+y+1}[/tex]
[tex]\text{e) }\log{1.5}=\log{3\cdot2^{-1}}=\log{3}-\log{2}=\boxed{y-x}[/tex]
[tex]\text{f) }\log{\sqrt{2}}=\log{2^{\frac{1}{2}}}=\dfrac{1}{2}\log{2}=\boxed{\dfrac{x}{2}}[/tex]