Respuesta :

Answer:

[tex]\frac{1}{4}[/tex] ([tex]\sqrt{2}[/tex] - [tex]\sqrt{6}[/tex] )

Step-by-step explanation:

Using the addition formula for cosine

cos(a + b) = cosacosb - sinasinb

and the exact values

cos[tex]\frac{\pi }{3}[/tex] = [tex]\frac{1}{2}[/tex], sin[tex]\frac{\pi }{3}[/tex] = [tex]\frac{\sqrt{3} }{2}[/tex] , cos[tex]\frac{\pi }{4}[/tex] = sin[tex]\frac{\pi }{4}[/tex] = [tex]\frac{\sqrt{2} }{2}[/tex]

Note [tex]\frac{7\pi }{12}[/tex] = [tex]\frac{\pi }{3}[/tex] + [tex]\frac{\pi }{4}[/tex] , thus

cos[tex]\frac{7\pi }{12}[/tex] = cos([tex]\frac{\pi }{3}[/tex] + [tex]\frac{\pi }{4}[/tex] )

= cos[tex]\frac{\pi }{3}[/tex]cos[tex]\frac{\pi }{4}[/tex] - sin[tex]\frac{\pi }{3}[/tex]sin[tex]\frac{\pi }{4}[/tex]

= ( [tex]\frac{1}{2}[/tex] × [tex]\frac{\sqrt{2} }{2}[/tex] ) - ([tex]\frac{\sqrt{3} }{2}[/tex] × [tex]\frac{\sqrt{2} }{2}[/tex] )

= [tex]\frac{\sqrt{2} }{4}[/tex] - [tex]\frac{\sqrt{6} }{4}[/tex]

= [tex]\frac{1}{4}[/tex] ([tex]\sqrt{2}[/tex] - [tex]\sqrt{6}[/tex] )

Answer:

d

Step-by-step explanation:

just did it on ed

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE