Suppose the midpoint of (AB) is M = (3,0). If point A has the coordinates of (-1,4), then what are the coordinates of B?
(1,2)
(-5,8)
ОООО
(7,-4)
О (-4,4)

Suppose the midpoint of AB is M 30 If point A has the coordinates of 14 then what are the coordinates of B 12 58 ОООО 74 О 44 class=

Respuesta :

Step-by-step explanation:

Hey there!

Here;

The one end is A(-1,4) and midpoint M(3,0).

Let another endpoint be B(x,y).

Using midpoint formula.

[tex](x,y) = (\frac{x1 + x2}{2} , \frac{y1 + y2}{2} )[/tex]

Put all values.

[tex](3,0) = ( \frac{ - 1 + x}{2} ,\frac{4 + y}{2} )[/tex]

Since, they are equal, equating with their corresponding elements we get.

[tex]3 = \frac{ - 1 + x}{2} [/tex]

6 = -1 +x

x= 7.

Again,

[tex]0 = \frac{4 + y}{2} [/tex]

0 = 4+y

y = -4

Therefore the another endpoint is (7,-4).

So, answer is option C.

Hope it helps...

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE