Respuesta :

Answer:

C.

Step-by-step explanation:

We want to find the limit:

[tex]\displaystyle \lim_{h\to 0} \frac{\sqrt{2x+2h}-\sqrt{2x}}{h}[/tex]

Let's remove the square roots in the numerator by multiplying both layers by the conjugate. Hence:

[tex]\displaystyle =\lim_{h\to 0} \frac{\sqrt{2x+2h}-\sqrt{2x}}{h}\left(\frac{\sqrt{2x+2h}+\sqrt{2x}}{\sqrt{2x+2h}+\sqrt{2x}}\right)[/tex]

In the numerator, we have the difference of two squares pattern. The difference of two squares is:

[tex](a-b)(a+b)=a^2-b^2[/tex]

So, our numerator is now:

[tex](\sqrt{2x+2h}-\sqrt{2x})(\sqrt{2x+2h}+\sqrt{2x})\\[/tex]

Difference of two squares:

[tex]=(\sqrt{2x+2h})^2-(\sqrt{2x})^2[/tex]

Simplify:

[tex]=(2x+2h)-(2x)[/tex]

In the denominator, we can keep everything the same for now. Thus, our limit is simplified to:

[tex]\displaystyle \lim_{h\to 0} \frac{(2x+2h)-(2x)}{h(\sqrt{2x+2h}+\sqrt{2x})}[/tex]

Subtract:

[tex]\displaystyle \lim_{h\to 0} \frac{(2h)}{h(\sqrt{2x+2h}+\sqrt{2x})}[/tex]

We can cancel the h:

[tex]\displaystyle \lim_{h\to 0} \frac{2}{\sqrt{2x+2h}+\sqrt{2x}}[/tex]

Now we can use direct substitution. So:

[tex]\displaystyle \Rightarrow \frac{2}{\sqrt{2x+2(0)}+\sqrt{2x}}[/tex]

Simplify:

[tex]\displaystyle =\frac{2}{\sqrt{2x}+\sqrt{2x}}[/tex]

Combine like terms:

[tex]\displaystyle =\frac{2}{2\sqrt{2x}}[/tex]

Reduce:

[tex]\displaystyle =\frac{1}{\sqrt{2x}}[/tex]

In conclusion:

[tex]\displaystyle \lim_{h\to 0} \frac{\sqrt{2x+2h}-\sqrt{2x}}{h}=\frac{1}{\sqrt{2x}}[/tex]

Hence, our answer is C.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE