Find the value of x and then find the length of RT
RT =
X=

Answer:
x = 5, RT = 18
Step-by-step explanation:
[tex]\triangle MNL \sim \triangle SRT... (given) \\
\therefore \frac{MN}{SR} = \frac{NL}{RT}.. (c.s.s.t)\\ \\
\therefore \frac{84}{24} = \frac{63}{3x+3}\\ \\
\therefore \frac{7}{2} = \frac{63}{3x+3}\\ \\
\therefore 3x+3 = \frac{63\times 2}{7}\\ \\
\therefore 3x + 3 = 9\times 2\\
\therefore 3x + 3 = 18\\
\therefore 3x = 18 - 3\\
\therefore 3x=15\\
\therefore x = \frac{15}{3}\\
\huge \red {\boxed {\therefore x = 5}} \\ \\
\because RT = 3x + 3\\
\therefore RT = 3\times 5+ 3\\
\therefore RT = 15+ 3\\
\huge \orange {\boxed {\therefore RT = 18}} [/tex]