Respuesta :

Answer:

x = 5, RT = 18

Step-by-step explanation:

[tex]\triangle MNL \sim \triangle SRT... (given) \\

\therefore \frac{MN}{SR} = \frac{NL}{RT}.. (c.s.s.t)\\ \\

\therefore \frac{84}{24} = \frac{63}{3x+3}\\ \\

\therefore \frac{7}{2} = \frac{63}{3x+3}\\ \\

\therefore 3x+3 = \frac{63\times 2}{7}\\ \\

\therefore 3x + 3 = 9\times 2\\

\therefore 3x + 3 = 18\\

\therefore 3x = 18 - 3\\

\therefore 3x=15\\

\therefore x = \frac{15}{3}\\

\huge \red {\boxed {\therefore x = 5}} \\ \\

\because RT = 3x + 3\\

\therefore RT = 3\times 5+ 3\\

\therefore RT = 15+ 3\\

\huge \orange {\boxed {\therefore RT = 18}} [/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE