Respuesta :

f(x) = [tex]4\sqrt[3]{x} - 8[/tex]

Let's replace f(x) with y

y = [tex]4\sqrt[3]{x} - 8[/tex]

Switch the x and y

x = [tex]4\sqrt[3]{y} - 8[/tex]

Now, let's solve for y. Start off by adding 8 to both sides.

x + 8 = [tex]4\sqrt[3]{y}[/tex]

Divide both sides by 4

[tex]\frac{x}{4} + 2[/tex] = [tex]\sqrt[3]{y}[/tex]

Take each side by the power of 3

[tex](\frac{x}{4} + 2)^{3}[/tex] = y

Now, let's replace y with [tex]f^{-1}(x)[/tex]

[tex]f^{-1}(x)[/tex] = [tex](\frac{x}{4} + 2)^{3}[/tex] is the inverse

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE