an equation for the line tangent to the graph of the differentiable function f at x=3 is y=4x+6. which of the following statements must be true?

Respuesta :

Answer:

C. II and III

Step-by-step explanation:

See attachment for complete question

Given

[tex]f(x) = 4x + 6[/tex]  differentiable at [tex]x = 3[/tex]

Start by representing y as [tex]f(x)[/tex];

[tex]f(x) = 4x + 6[/tex]

Solving (I): [tex]f(0) = 3[/tex]

Substitute 0 for x in [tex]f(x) = 4x + 6[/tex]

[tex]f(0) = 4 * 0 + 6[/tex]

[tex]f(0) = 0 + 6[/tex]

[tex]f(0) = 6[/tex]

I is not true

Solving (II): [tex]f(3) = 18[/tex]

Substitute 3 for x in [tex]f(x) = 4x + 6[/tex]

[tex]f(3) = 4 * 3 + 6[/tex]

[tex]f(3) = 12 + 6[/tex]

[tex]f(3) = 18[/tex]

II is true

Solving (III): [tex]f'(3) = 4[/tex]

First , we have to differentiate  [tex]f(x)[/tex]

[tex]f(x) = 4x + 6[/tex]

[tex]f'(x) = 1 * 4x^{1 - 1} + 0[/tex]

[tex]f'(x) = 1 * 4x^{0} + 0[/tex]

[tex]f'(x) = 1 * 4 + 0[/tex]

[tex]f'(x) = 4[/tex]

Then, substitute 3 for x in [tex]f'(x) = 4[/tex]

[tex]f'(3) = 4[/tex]

III is true

Ver imagen MrRoyal
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE