8. Angle α is in quadrant III, and angle β is in quadrant II. If sin α = –4∕5 and sin β = 1∕2, find cos (α + β).

8 Angle α is in quadrant III and angle β is in quadrant II If sin α 45 and sin β 12 find cos α β class=

Respuesta :

Answer:

D

Step-by-step explanation:

Using the addition formula for cosine

cos(α + β) = cosαcosβ - sinαsinβ

Given α in quadrant 3 then and sinα = - [tex]\frac{4}{5}[/tex] = [tex]\frac{opposite}{hypotenuse}[/tex] , then

cosα < 0 in the third quadrant

The adjacent side of the triangle = 3  since 3- 4- 5 right triangle

Thus

cosα = [tex]\frac{adjacent}{hypotenuse}[/tex] = - [tex]\frac{3}{5}[/tex]

---------------------------------------

Given β in second quadrant and sinβ = [tex]\frac{1}{2}[/tex] = [tex]\frac{opposite}{hypotenuse}[/tex] , then

cosβ < 0 in the second quadrant

The adjacent side of the triangle = [tex]\sqrt{3}[/tex] since 1- [tex]\sqrt{3}[/tex] - 2 right triangle

Thus

cosβ = [tex]\frac{adjacent}{hypotenuse}[/tex] = - [tex]\frac{\sqrt{3} }{2}[/tex]

Hence

cos(α + β )

= ( - [tex]\frac{3}{5}[/tex] × - [tex]\frac{\sqrt{3} }{2}[/tex] ) - (- [tex]\frac{4}{5}[/tex] × [tex]\frac{1}{2}[/tex] )

= [tex]\frac{3\sqrt{3} }{10}[/tex] + [tex]\frac{4}{10}[/tex]

= [tex]\frac{3\sqrt{3}+4 }{10}[/tex] → D

Answer:

D

Step-by-step explanation:

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE