Respuesta :

Given:

Suppose point D is in the interior of ∠ABC , m∠ABC=12x−110 , m∠ABD=3x+40 , and m∠DBC=2x−10.

To find:

The measure of ∠ABC.

Solution:

Since point D is in the interior of ∠ABC, therefore

[tex]m\angle ABC=m\angle ABD+m\angle DBC[/tex]

Substitute the given values, we get

[tex]12x-110=(3x+40)+(2x-10)[/tex]

[tex]12x-110=5x+30[/tex]

[tex]12x-5x=110+30[/tex]

[tex]7x=140[/tex]

Divide both sides by 7.

[tex]x=20[/tex]

The value of x is 20.

[tex]m\angle ABC=12x-110[/tex]

[tex]m\angle ABC=12(20)-110[/tex]

[tex]m\angle ABC=240-110[/tex]

[tex]m\angle ABC=130^\circ[/tex]

Therefore, the measure of ∠ABC is 130 degrees.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE