Find the exact values of the six trigonometric ratios of the angle in the triangle.
200
205

Answer:
sin(theta) = 0.9756097561
cos(theta) = 0.2195121951
tan(theta) = 4.4444444444
cosec(theta) = 1.025
sec(theta) = 4.555555556
cot(theta) = 0.225
Step-by-step explanation:
In the triangle ,
Hypotunuse = 205
Perpendicular = 200
Using Pythagorean Theorem here ,
Base = [tex] \sqrt{ {205}^{2} - {200}^{2} } = \sqrt{2025} = 45[/tex]
We know that
[tex] \sin(theta) = \frac{opposite}{hypotenue} = \frac{200}{205} [/tex]
[tex] \cos(theta) = \frac{adjacent}{hypotenuse} = \frac{45}{205} [/tex]
[tex] \tan(theta) = \frac{opposite}{adjacent} = \frac{200}{45} [/tex]
[tex] \cosec(theta) = \frac{1}{ \sin(theta) } = \frac{205}{200} [/tex]
[tex] \sec(theta) = \frac{1}{ \cos(theta) } = \frac{205}{45} [/tex]
[tex] \cot(theta) = \frac{1}{ \tan(theta) } = \frac{45}{200} [/tex]