Please help!


angleEFG and angleGFH are a linear​ pair, mangleEFG=s2n+22​, and mangleGFH=4n+38. What are mangleEFG and mangle​GFH?

Respuesta :

Answer: [tex]m\angle EFG=62^{\circ},\ m\angle GFH =118^{\circ} .[/tex]

Step-by-step explanation:

We know that a linear pair is pair of angles whose sum is 180°.

Given, ∠ EFG and ∠ GFH are a linear​ pair

[tex]m\angle EFG= s^2n+22[/tex]  and [tex]m\angleGFH = 4n+38[/tex]

By definition of linear pair.

[tex]m\angle EFG+m\angle GFH = 180^{\circ}\\\\\Rightarrow\ 2n+22+4n+38=180\\\\\Rightarrow6n+60=180\\\\\Rightarrow6n=180-60 \\\\\Rightarrow6n=120\\\\\Rightarrow n=20[/tex]

Now,

[tex]m\angle EFG = 2(20)+22=40+22=62^{\circ}\\\\ m\angle GFH = 4(20)+38=80+38=118^{\circ}[/tex]

Hence, [tex]m\angle EFG=62^{\circ},\ m\angle GFH =118^{\circ} .[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE