Solution:
Calculating the polled variance
[tex]$ S_p^2 = \frac{(n_1-1)S_1^2+(n_2-1)S_2^2}{n_1+n_2-2}$[/tex]
= [tex]$ \frac{(28-1)\times 119^2+(28-1)\times 125^2}{28+28-2}$[/tex]
= 14893
Now we calculate the estimated standard error
[tex]$ S_{M1-M2} =\sqrt {\frac{S_p^2}{n_1}+\frac{S_p^2}{n_2}}$[/tex]
[tex]$=\sqrt{\frac{14893}{28}+\frac{14893}{28}} = 32.61$[/tex]
Thus , the 99 percent confidence interval is
= [tex]$(M_1-M_2) \pm t_{54.001}\times S_{M_1-M_2}$[/tex]
= 351 - 305 ± 2.660 x 32.6
= (46) ± 86.74
= (-40.74, 132.74)
Now the null hypothesis is :
[tex]$H_0 : u_1-u_2 = 0$[/tex]
Against the alternative hypothesis
[tex]$H_0 : u_1-u_2 > 0$[/tex]
Computing the statistics ,
[tex]$t = \frac{(M_1-M_2)-(u_1-u_2)}{S_{M_1-M_2}}$[/tex]
[tex]$= \frac{(351-305)-0}{32.61}$[/tex]
= 1.41