Given the coordinates X (0,0), Y (6,3), and Z (1.5, 0.75). Find the ratio where point Z partitioned segment XY.

Show work please

Respuesta :

Given:

The coordinates are X (0,0), Y (6,3), and Z (1.5, 0.75).

To find:

The ratio where point Z partitioned segment XY.

Solution:

Section formula: If a point divides a line segment is m:n, then

[tex]Point=\left(\dfrac{mx_2+nx_1}{m+n},\dfrac{my_2+ny_1}{m+n}\right)[/tex]

Let point Z partitioned segment XY in k:1.

Using section formula, we get

[tex]Z=\left(\dfrac{k(6)+1(0)}{k+1},\dfrac{k(3)+1(0)}{k+1}\right)[/tex]

[tex](1.5,0.75)=\left(\dfrac{6k}{k+1},\dfrac{3k}{k+1}\right)[/tex]

On comparing both sides, we get

[tex]\dfrac{6k}{k+1}=1.5[/tex]

[tex]6k=1.5k+1.5[/tex]

[tex]6k-1.5k=1.5[/tex]

[tex]4.5k=1.5[/tex]

Divide both sides by 4.5.

[tex]k=\dfrac{1.5}{4.5}[/tex]

[tex]k=\dfrac{1}{3}[/tex]

So, the required ratio is

[tex]k:1=\dfrac{1}{3}:1[/tex]

[tex]k:1=1:3[/tex]

Therefore, point Z partitioned segment XY in 1:3.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE