Respuesta :

Answer:

[tex](3\sqrt{3} -2\sqrt{2})^2=35-12\sqrt{6}[/tex]

Step-by-step explanation:

Using the FOIL method:

[tex]F+O+I+L[/tex]

Simplify the expression by squaring:

[tex](3\sqrt{3}-2\sqrt{2} )(3\sqrt{3}-2\sqrt{2})[/tex]

Now we can use the Foil method:

First, Outside, Inside, Last

Multiply the first terms within each grouping:

[tex]3\sqrt{3}*3\sqrt{3} \\\\3*3\sqrt{3*3} \\\\9\sqrt{9} \\\\9*3\\\\27[/tex]

Insert as the first term:

[tex]27+O+I+L[/tex]

Now multiply the outside terms in each grouping:

[tex]3\sqrt{3} *(-2\sqrt{2})\\\\-3*2\sqrt{3*2} \\\\-6\sqrt{6}[/tex]

Insert as the next term:

[tex]27-6\sqrt{6} +I+L[/tex]

Now multiply the inside terms:

[tex]-2\sqrt{2} *3\sqrt{3} \\\\-2*3\sqrt{2*3} \\\\-6\sqrt{6}[/tex]

Insert as the third term:

[tex]27-6\sqrt{6} -6\sqrt{6}+L[/tex]

Now multiply the last terms in the grouping:

[tex]-2\sqrt{2} *(-2\sqrt{2} )\\\\-2*(-2)\sqrt{2*2}\\\\ 4\sqrt{4}\\\\4*2\\\\8[/tex]

Insert as the last term:

[tex]27-6\sqrt{6} -6\sqrt{6}+8[/tex]

Simplify by combining like terms:

[tex]27+8-6\sqrt{6} -6\sqrt{6}\\\\35-12\sqrt{6}[/tex]

:Done

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE