Respuesta :

Answer:

f(5) = 2

f'(5) = [tex]\frac{1}{5}[/tex]

Step-by-step explanation:

Tangent line to a function y = f(x) on a point (5, 2) passes through two points (5, 2) and (0, 1)

Let the equation of the line is,

y - y' = m(x - x')

Slope of a line passing through [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] = [tex]\frac{y_2-y_1}{x_2-x_1}[/tex]

                                                                                   = [tex]\frac{2-1}{5-0}[/tex]

                                                                                   = [tex]\frac{1}{5}[/tex]

Therefore, equation of the line passing through (0, 1) and slope = [tex]\frac{1}{5}[/tex] will be,

y - 1 = [tex]\frac{1}{5}(x-0)[/tex]

y = [tex]\frac{x}{5}+1[/tex]

Function representing equation will be,

f(x) = [tex]\frac{x}{5}+1[/tex]

At x = 5,

f(5) = [tex]\frac{5}{5}+1[/tex]

     = 1 + 1

     = 2

f(5) = 2

f'(x) = [tex]\frac{d}{dx}(\frac{x}{5}+1)[/tex]

       = [tex]\frac{1}{5}[/tex]

Therefore, f'(5) = [tex]\frac{1}{5}[/tex] will be the answer.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE