Respuesta :

Answer:

[tex]x=3,x=-1[/tex]

Step-by-step explanation:

Start with:

[tex]x(x-1)-3(x-3)+3(x-2)=x+6[/tex]

Distribute the values on the outside of each of the parentheses.

[tex]x^2-x-3x+9+3x-6=x+6[/tex]

Combine like terms.

[tex]x^2-x+3=x+6[/tex]

Subtract [tex]6[/tex] from both sides of the equation.

[tex]x^2-x-3=x[/tex]

Subtract [tex]x[/tex] from both sides of the equation.

[tex]x^2-2x-3=0[/tex]

Now, we need to use our quadratic equation formula:

[tex]ax^2+bx+c=0[/tex]

[tex]x= \frac{-b+/-\sqrt{b^2-4ac}}{2a}[/tex]

Identify your values.

[tex]a=1\\b=-2\\c=-3[/tex]

Substitute.

(Solve positive)

[tex]x= \frac{-(-2)+\sqrt{(-2)^2-4(1)(-3)}}{2(1)}[/tex]

Solve.

[tex]x= \frac{2+\sqrt{(16}}{2}[/tex]

Find the square root of [tex]16[/tex].

[tex]x=\frac{2+4}{2}[/tex]

Add.

[tex]x=\frac{6}{2}[/tex]

Simplify.

[tex]x=3[/tex]

~

(Solve negative)

[tex]x= \frac{-(-2)-\sqrt{(-2)^2-4(1)(-3)}}{2(1)}[/tex]

Solve.

[tex]x= \frac{2-\sqrt{(16}}{2}[/tex]

Find the square root of [tex]16[/tex].

[tex]x=\frac{2-4}{2}[/tex]

Subtract.

[tex]x=\frac{-2}{2}[/tex]

Simplify.

[tex]x=-1[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE