Answer:
The answer is below
Explanation:
a) The vertical displacement = Δy = 21.5 m - 1.5 m = 20 m
The horizontal displacement = Δx = 69 m wide
Using the formula:
[tex]\Delta y = u_yt+ \frac{1}{2}a_yt^2\\ \\u_y=initial\ velocity\ of \ car\ in\ y\ direction = 0,a_y=g=acceleration\ due\ to\ gravity\\=10m/s^2\\\\\Delta y = \frac{1}{2}a_yt^2\\\\\Delta y=\frac{1}{2}a_yt^2\\\\t=\sqrt{\frac{2\Delta y}{a_y} }=\sqrt{\frac{2*20}{10} } =2\ m/s[/tex]
Also:
[tex]\Delta x = u_xt+ \frac{1}{2}a_xt^2\\ \\u_x=initial\ velocity\ of \ car\ in\ x\ direction = 0,a_x=acceleration=0\\\\\Delta x = u_xt\\\\u_x=\frac{\Delta x}{t}=\frac{69}{2} =34.5\ m/s[/tex]
b)The car is moving at a constant speed in the horizontal direction, hence the initial velocity = final velocity
[tex]v_x=u_x=34.5\ m/s\\\\v_y=u_y+a_yt\\\\v_y=0+gt\\\\v_y=10(2)=20\ m/s\\\\v=\sqrt{v_x^2+v_y^2}=\sqrt{34.5^2+20^2}=39.9\ m/s\\ v=39.9\ m/s[/tex]