Answer:
a). 0.294
b) 0.11
Step-by-step explanation:
From the given information:
the probability of the low risk = 0.60
the probability of the high risk = 0.40
let [tex]C_o[/tex] represent no claim
let [tex]C_1[/tex] represent 1 claim
let [tex]C_2[/tex] represent 2 claim :
For low risk;
so, [tex]C_o[/tex] = (0.80 * 0.60 = 0.48), [tex]C_1[/tex] = (0.15* 0.60=0.09), [tex]C_2[/tex] = (0.05 * 0.60=0.03)
For high risk:
[tex]C_o[/tex] = (0.50 * 0.40 = 0.2), [tex]C_1[/tex] = (0.30 * 0.40 = 0.12) , [tex]C_2[/tex] = ( 0.20 * 0.40 = 0.08)
Therefore:
a), the probability that a randomly selected policyholder is high-risk and filed no claims can be computed as:
[tex]P(H|C_o) = \dfrac{P(H \cap C_o)}{P(C_o)}[/tex]
[tex]P(H|C_o) = \dfrac{(0.2)}{(0.48+0.2)}[/tex]
[tex]P(H|C_o) = \dfrac{(0.2)}{(0.68)}[/tex]
[tex]P(H|C_o) = 0.294[/tex]
b) What is the probability that a randomly selected policyholder filed two claims?
the probability that a randomly selected policyholder be filled with two claims = 0.03 + 0.08
= 0.11