Respuesta :
Answer:
(1)[tex]\Delta E_{tw}=4845.43 kW[/tex]
(2)[tex]\Delta E_m=6.329 kW[/tex]
(3)[tex]\Delta E_t= 4851.759 kW[/tex]
(4) [tex]q= 4851.759 kW[/tex]
Explanation:
At the saturation temperature, water starts boiling, and before that heat is added at constant pressure as latent heat.
From the saturated water-pressure table, at the pressure [tex]P=10[/tex] bar, we have
The saturated temperature of the water, [tex]T_{sw}=179.88^{\circ} C[/tex]
The specific volume of water, [tex]v_{ws}=v_f=0.00127 m^3/kg[/tex]
Specific enthalpy of water, [tex]h_{ws}=h_f=762.50 kJ/kg[/tex]
The given inlet temperature of the water, [tex]T_i=110^{\circ}[/tex] , so, latent heat added to the water to reach the saturation temperature is
[tex]h_l=C_P(T_{sw}-T_i)[/tex]
[tex]\Rightarrow h_l=4.187(179.88^{\circ} -110^{\circ}[/tex]
[tex]\Rightarrow h_l=292.587 kJ/kg[/tex]
Now, specific enthalpy of the water at the inlet [tex]=[/tex] (specific enthalpy of the water at the saturation temperature) [tex]-[/tex] (Latent heat capacity).
[tex]\Rightarrow h_i=h_{sw}-h_l[/tex]
[tex]\Rightarrow h_i=762.50-292.587=469.912kJ/kg[/tex]
The specific volume of the water at intel is the same as the specific volume at the saturation temperature as volume remains unchanged on the addition of latent heat.
So, [tex]v_i=v_{ws}=0.00127 m^3/kg[/tex].
The outlet temperature, [tex]T_o=600^{\circ} C[/tex]and pressure, [tex]P_o=7[/tex] bar. From the superheated water table, we have
The specific volume of water, [tex]v_o=0.5738 m^3/kg[/tex]
The specific enthalpy of water, [tex]h_{wo}=3700.9 kJ/kg[/tex]
The given mass flow rate,[tex]\dot{m} =1.5 kg/s[/tex].
The inlet radius and outlet diameter are the same, i.e
[tex]d_i=d_o=110 mm=0.11m[/tex].
So, Inlet and outlet areas, [tex]A_i=A_f=9.5033\times 10^{-3} m^2[/tex].
Let the inlet and outlet velocities be [tex]V_i[/tex] and [tex]V_o[/tex] respectively.
For the given specific volume, [tex]v[/tex], and mass flow rate, [tex]\dot{m}[/tex], the velocity, [tex]V[/tex], at any cross-section having an area [tex]A[/tex] is
[tex]V=\frac{v\dot{m}}{A}[/tex].
So, the inlet velocity,
[tex]V_i=\frac{v_i \dot{m}}{A_i}[/tex]
[tex]\Rightarrow V_i=\frac{0.00127\times 1.5}{9.5033\times 10^{-3}}[/tex]
[tex]\Rightarrow V_i=0.20 m/s[/tex].
Similarly, the outlet velocity,
[tex]V_o=\frac{v_o \dot{m}}{A_o}[/tex]
[tex]\Rightarrow V_o=\frac{0.5738\times 1.5}{9.5033\times 10^{-3}}[/tex]
[tex]\Rightarrow V_0=90.57 m/s[/tex].
(1) The change in combined thermal energy and work flow [tex]=[/tex] Change in the thermal energy [tex]+[/tex] Change in the flow work
[tex]\Delta E_{tw}= \dot{m}(u_f-u_i)+\dot{m} (P_fv_f-P_iv_i)[/tex]
[tex]\Rightarrow \Delta E_{tw}=\dot{m}[(u_f+P_fv_f) - (u_i+P_iv_i)[/tex]
[tex]\Rightarrow \Delta E_{tw}=\dot{m} (h_f-h_i)[/tex]
[tex]\Rightarrow \Delta E_{tw}=1.5(3700,20-469.912)=4845.43 kW[/tex]
(2)The change in mechanical energy
[tex]\Delta E_m=[/tex] Change in kinetic energy + change in potential energy
[tex]\Rightarrow \Delta E_m=\left(\frac 1 2 \dot{m} V_f^2-\frac 1 2 \dot{m} V_i^2\right)+(\dot{m} g z_f-\dot{m} g z_i)[/tex]
[tex]\Rightarrow \Delta E_m=\frac 1 2 \dot{m}(V_f^2-V_i^2)+\dot{m} g (z_f-z_i)[/tex]
[tex]\Rightarrow \Delta E_m=\frac 1 2\times 1.5((90.57)^2-(0.2)^2)+1.5 \times 9.81 \times12[/tex]
[tex]\Rightarrow \Delta E_m=6328.74 J/s=6.329 kW[/tex]
(3) The change in the total energy of water,
[tex]\Delta E_t=[/tex]chnge in the thernal energy + change in the flow work + change in the mechanical energy
[tex]\Rightarrow \Delta E_t=4845.43+6.329= 4851.759 kW[/tex] [from part (1) and (2)]
(4) Now, as there is no work done by the water, so, the heat input only caused the change in the total energy.
Hence, the rate of heat transfer, [tex]q= 4851.759 kW[/tex] [from part (3).