Order each set of cards from least to greatest. a. .,⎯⎯⎯⎯√,0.25 , comma , square root of 1 ninth end root , comma , 6 twenty fifths b. ⎯⎯⎯⎯⎯⎯⎯√,.,⎯⎯√square root of 121 over 25 end root , comma , 2.25 , comma square root of 5

Respuesta :

Given:

a. [tex]\sqrt{0.25},\sqrt{\dfrac{1}{9}},\dfrac{6}{25}[/tex]

b. [tex]\sqrt{\dfrac{121}{25}},2.25,\sqrt{5}[/tex]

To find:

The correct order for each set of cards from least to greatest.

Solution:

a. [tex]\sqrt{0.25},\sqrt{\dfrac{1}{9}},\dfrac{6}{25}[/tex]

Convert all numbers in decimal form.

[tex]\sqrt{0.25}=0.5[/tex]

[tex]\sqrt{\dfrac{1}{9}}=\dfrac{1}{3}=0.333...[/tex]

[tex]\dfrac{6}{25}=0.24[/tex]

It is clear that,

[tex]0.24<0.33...<0.5[/tex]

[tex]\dfrac{6}{25}<\sqrt{\dfrac{1}{9}}<\sqrt{0.25}[/tex]

Therefore, the required order is [tex]\dfrac{6}{25},\sqrt{\dfrac{1}{9}},\sqrt{0.25}[/tex].

b. [tex]\sqrt{\dfrac{121}{25}},2.25,\sqrt{5}[/tex]

Convert all numbers in decimal form.

[tex]\sqrt{\dfrac{121}{25}}=\dfrac{11}{5}=2.2[/tex]

[tex]2.25[/tex] already in decimal form.

[tex]\sqrt{5}\approx 2.236[/tex]

It is clear that,

[tex]2.2<2.236<2.25[/tex]

[tex]\sqrt{\dfrac{121}{25}}<\sqrt{5}<2.25[/tex]

Therefore, the required order is [tex]\sqrt{\dfrac{121}{25}},\sqrt{5},2.25[/tex].

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE