Respuesta :
Answer:
y = 5/4x -11
Step-by-step explanation:
The slope intercept form of a line is
y = mx+b
where m is the slope and b is the y intercept
y = 5/4 x + b
Substitute the point into the line
-1 = 5/4(8) +b
-1 =10 +b
Subtract 10 from each side
-11 = b
y = 5/4x -11
Answer:
[tex]\huge \boxed{y=\frac{5}{4} x-11}[/tex]
Step-by-step explanation:
The slope-intercept form of a line is written as,
[tex]y=mx+b \\ \\ \\ \sf m= slope \\ \\ b=y -intercept[/tex]
The slope is given.
[tex]\displaystyle y=\frac{5}{4} x+b[/tex]
The line passes through the point (8, -1).
[tex]x=8 \\ \\ y=-1[/tex]
Plugging in the values.
[tex]\displaystyle -1=\frac{5}{4} (8)+b[/tex]
Solving for b or y-intercept of the line.
[tex]\displaystyle -1=\frac{40}{4} +b[/tex]
[tex]-1=10+b[/tex]
[tex]-11=b[/tex]
The y-intercept of the line is -11.
[tex]\displaystyle y=\frac{5}{4} x-11[/tex]