Respuesta :

Answer:

adjacent / hypotenuse cos x° = g divided by h is right

Step-by-step explanation:

If   [tex]tanx^{o} = \frac{6}{g}[/tex] and [tex]sinx^{o} = \frac{6}{h}[/tex]  then  [tex]cosx^{o} = \frac{g}{h}[/tex] .

Trigonometric Ratios:

By right angled triangle we have,

  Trigonometric ratios as

  • sinθ  = [tex]\frac{opposite}{hypotenuse}[/tex]
  • cosθ = [tex]\frac{adjacent}{hypotenuse}[/tex]
  • tanθ = [tex]\frac{opposite}{adjacent}[/tex]

 Given  [tex]sinx^{o} = \frac{6}{h}[/tex]  and [tex]tanx^{o} = \frac{6}{g}[/tex]

  •  By comparison, we have

              opposite = 6, hypotenuse = h, adjacent = g

  •   Hence, we can write

                  [tex]cosx^{o}[/tex] = [tex]\frac{adjacent}{hypotenuse}[/tex]  [tex]=\frac{g}{h}[/tex]

   

Learn more about Trigonometry :

https://brainly.com/question/13882775?referrer=searchResults

#SPJ2

 

   

Ver imagen tutorconsortium008
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE