Answer:
[tex](x-3-2i)(x-3+2i)[/tex]
Steps:
[tex]8x^2-48x=-104[/tex]
[tex]8x^2-48x+104=0[/tex]
Divide both sides by 8
[tex]x^2-6x+13=0[/tex]
But we can't factor it.
Using the Quadratic Formula to calculate the roots:
[tex]$x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}$[/tex]
[tex]$x=\frac{-(-48)\pm \sqrt{(-48)^2-4\cdot 8\cdot 104}}{2\cdot 8}$[/tex]
[tex]$x=\frac{48\pm32i}{16}$[/tex]
[tex]x_1=3+2i\\x_2=3-2i[/tex]
The answer might be
[tex](x-(3+2i))(x-(3-2i))[/tex]
[tex](x-3-2i)(x-3+2i)[/tex]