A rigid container is partly filled with a liquid at 1520 kPa. The volume of the liquid is 1.232 litres. At a pressure
of 3039 kPa, the volume of the liquid is 1.231 litres.
a. Calculate the average bulk modulus of elasticity of the liquid

Respuesta :

Answer:

Bulk modulus: ß = - ∆p/(∆V/V)

∆p = (3039 - 1520)x10³ = 1519 kPa

∆V = 1231 - 1232 = -1 m³

V = 1232 m³

ß = - 1519/(-1/1232) = 1.87x10^6 kPa = 1.87 GPa

Explanation:

a.The average bulk modulus of elasticity of the liquid is 1.87 GPa

b. Coefficient of compressibility 0.5437 GPa-¹

c Velocity of sound 1.87 x 10^9P

a. Bulk modulus of elasticity

ß = - ∆p/(∆V/V)

First step  is to determine ∆p

∆p = (3039 kpa - 1520 kpa)x10³

∆p  = 1519 kPa

Second step is to determine ∆V

∆V = 1231 litres - 1232 litres

∆V = -1 m³

Now let determine the Bulk modulus of elasticity

Bulk modulus of elasticity= - 1519/(-1/1232)

Bulk modulus of elasticity= 1.87x10^6 kPa

Bulk modulus of elasticity= 1.87 GPa

b. The coefficient of compressibility

Coefficient of compressibility=β =1/K

Coefficient of compressibility=β =1/1.87

β =0.5437 GPa-¹

C. Velocity of sounds  in the medium with a density of 1593 kg/m3

V=√K/ρ

V=√1.87×10^9/ 1593

V=1083m/s

V = 1.87 x 10^9P

Inconclusion:

a.The average bulk modulus of elasticity of the liquid is 1.87 GPa

b. Coefficient of compressibility 0.5437 GPa-¹

c Velocity of sound 1.87 x 10^9P

Learn more here:

https://brainly.com/question/16393481

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE