Respuesta :
Answer:
Bulk modulus: ß = - ∆p/(∆V/V)
∆p = (3039 - 1520)x10³ = 1519 kPa
∆V = 1231 - 1232 = -1 m³
V = 1232 m³
ß = - 1519/(-1/1232) = 1.87x10^6 kPa = 1.87 GPa
Explanation:
a.The average bulk modulus of elasticity of the liquid is 1.87 GPa
b. Coefficient of compressibility 0.5437 GPa-¹
c Velocity of sound 1.87 x 10^9P
a. Bulk modulus of elasticity
ß = - ∆p/(∆V/V)
First step is to determine ∆p
∆p = (3039 kpa - 1520 kpa)x10³
∆p = 1519 kPa
Second step is to determine ∆V
∆V = 1231 litres - 1232 litres
∆V = -1 m³
Now let determine the Bulk modulus of elasticity
Bulk modulus of elasticity= - 1519/(-1/1232)
Bulk modulus of elasticity= 1.87x10^6 kPa
Bulk modulus of elasticity= 1.87 GPa
b. The coefficient of compressibility
Coefficient of compressibility=β =1/K
Coefficient of compressibility=β =1/1.87
β =0.5437 GPa-¹
C. Velocity of sounds in the medium with a density of 1593 kg/m3
V=√K/ρ
V=√1.87×10^9/ 1593
V=1083m/s
V = 1.87 x 10^9P
Inconclusion:
a.The average bulk modulus of elasticity of the liquid is 1.87 GPa
b. Coefficient of compressibility 0.5437 GPa-¹
c Velocity of sound 1.87 x 10^9P
Learn more here:
https://brainly.com/question/16393481