Respuesta :

Answer:

See Explanation

Step-by-step explanation:

[tex] \overline{CB} ||\overline {ED}... (GIVEN) \\

\& BD\:\&\: CE \: are \: transversals\\

\angle CBF\cong \angle EDF.. (alternate \: \angle 's) \\

\overline{CB} \cong \overline {ED}..... (GIVEN) \\

\angle BCF \cong \angle FED.. (alternate \: \angle 's) \\

\therefore \triangle CBF \cong \triangle EDF.. (By \: ASA\: Postulate) [/tex]

Answer:  see proof below

Step-by-step explanation:

   Statement                     Reason

1. CB || ED                       1. Given

2. ∠E ≅ ∠C                     2. Alternate Interior Angle Postulate

3. ∠D ≅ ∠B                     3. Alternate Interior Angle Postulate

4. CB ≅ ED                     4. Given

5. ΔCBF ≅ ΔEDF            5. ASA Congruency Theorem

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE