Average rate of change for the function from 1 to 4.
H(x)=x^3-1

Answer:
A. 21
Step-by-step explanation:
First, find h(1) and h(4) given the function, [tex] h(x) = x^3 - 1 [/tex]
[tex] h(1) = (1)^3 - 1 = 1 - 1[/tex]
[tex] h(1) = 0 [/tex]
[tex] h(4) = (4)^3 - 1 [/tex]
[tex] h(4) = 64 - 1 [/tex]
[tex] h(4) = 63 [/tex]
Average rate of change = [tex] \frac{h(b) - h(a)}{b - a} [/tex]
Where,
[tex] a = 1, h(a) = 0 [/tex]
[tex] b = 4, h(b) = 63 [/tex]
Average rate of change = [tex] \frac{63 - 0}{4 - 1} [/tex]
[tex] = \frac{63}{3} = 21 [/tex]