Respuesta :

Answer:

  (a) -5, 4

  (b) no solution

Step-by-step explanation:

(a) x+5 will be zero when x = -5.

  x-4 will be zero when x = 4.

The restricted values are: x = -5 and x = 4.

__

(b) We can simplify the difference of the two sides of the equation.

  [tex]\dfrac{4}{x+5}+\dfrac{5}{x-4}=\dfrac{45}{(x+5)(x-4)}\\\\\dfrac{4(x-4)+5(x+5)}{(x+5)(x-4)}=\dfrac{45}{(x+5)(x-4)}\\\\\dfrac{9x+9}{(x+5)(x-4)}-\dfrac{45}{(x+5)(x-4)}=0\\\\\dfrac{9(x-4)}{(x+5)(x-4)}=0\\\\\dfrac{9}{x+5}=0\qquad\text{NO SOLUTION}[/tex]

__

The graph shows there are no values of x that cause the two sides of the equation to be equal (their difference to be zero).

Ver imagen sqdancefan
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE