Respuesta :

Answer:

The question is not correct.

The correct question is sphere x2 +y2 + z2 = 36, f(x,y,z) = x2+y2  for z ≥ 0

Step-by-step explanation:

The given function is [tex]f(x,y,z) = x^2 + y^2, $[/tex] where S is the hemisphere, [tex]$ x^2 +y^2+ z^2 =36\ for\ z \geq 0$[/tex].

To evaluate the surface integral [tex]$ \int \underset{S} \int f dS $[/tex]

Now using the polar coordinates, we get

x = r cos θ, y = r sin θ for 0 ≤ θ ≤ 2π and x² + y² = r²

Now given

x²+y²+z=36   ......(i)

Put z = 0 in equation (i), we get

⇒ r² = 36, r = 6

Now writing the limits,

0 ≤ r ≤ 6,  0 ≤ θ ≤ 2π and f(x,y,z) = x²+y²=r²

Hence, surface integral

[tex]$ \underset{0}{\overset{2\pi} \int} \underset{0}{\overset{6} \int}r (r^2) dr d \theta $[/tex]

[tex]$ =\underset{0}{\overset{2\pi} \int} [\frac{r^4}{4}]_0 ^6 d \theta $[/tex]

[tex]$= 2 \pi ( \frac{6^4}{4}) = 648 \pi$[/tex]

                             

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE