Respuesta :

Answer:

st

Just substitute in the given values

Step-by-step explanation:

Hey, there!!

You can solve it simply,

1.

Given,

x= 1 , y=2 , z= 3

To solve:

[tex] = \frac{1}{ {x}^{2} } - \frac{x}{y + z} [/tex]

[tex] = \frac{1}{ {1}^{2} } - \frac{1}{2 + 3} [/tex]

[tex] = 1 - \frac{1}{5} [/tex]

Taking LCM,

[tex] = \frac{5 - 1}{5} [/tex]

Therefore, the final answer is 4/5.

2.

Given,

x= 1 , y= -2, z= -1.

To solve:

[tex] = \frac{1}{ {x}^{2} } - \frac{x}{y + z} [/tex]

[tex] = \frac{1}{ {1}^{2} } - \frac{1}{ - 2 - 1} [/tex]

Taking LCM,

[tex] = \frac{ - 3 - 1}{ - 3} [/tex]

[tex] = \frac{ - 4}{ - 3} [/tex]

Cancelling the minus sign,

[tex] \frac{4}{ 3} [/tex]

is the final answer.

3.

Given,

x= -3, y= -1, z= 4

To solve:

[tex] = \frac{1}{ {x}^{2} } - \frac{x}{y + z} [/tex]

[tex] = \frac{1}{ {( - 3)}^{2} } - \frac{ - 3}{ - 1 + 4} [/tex]

[tex] = \frac{1}{9} - ( - 1)[/tex]

[tex] = \frac{1 + 9}{9} [/tex]

Therefore, the answer is 10/9.

4.

Given,

x= 1/2, y=1, z=1.

To solve:

[tex] = \frac{1}{ {x}^{2} } - \frac{x}{y + z} [/tex]

[tex] = \frac{1}{ ( { \frac{1}{2}) }^{2} } - \frac{ \frac{1}{2} }{1 + 1} [/tex]

Simplifying them ,

[tex]1 \times \frac{4}{1} - \frac{1}{2} \times 2[/tex]

[tex] = 4 - 1[/tex]

Therefore, the answer is 3.

Hope it helps...

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE