Help me please I need this for my test tomorrow pleaseeeee!!!!!!

Step-by-step explanation:
Hey, there!!
You can solve it simply,
1.
Given,
x= 1 , y=2 , z= 3
To solve:
[tex] = \frac{1}{ {x}^{2} } - \frac{x}{y + z} [/tex]
[tex] = \frac{1}{ {1}^{2} } - \frac{1}{2 + 3} [/tex]
[tex] = 1 - \frac{1}{5} [/tex]
Taking LCM,
[tex] = \frac{5 - 1}{5} [/tex]
Therefore, the final answer is 4/5.
2.
Given,
x= 1 , y= -2, z= -1.
To solve:
[tex] = \frac{1}{ {x}^{2} } - \frac{x}{y + z} [/tex]
[tex] = \frac{1}{ {1}^{2} } - \frac{1}{ - 2 - 1} [/tex]
Taking LCM,
[tex] = \frac{ - 3 - 1}{ - 3} [/tex]
[tex] = \frac{ - 4}{ - 3} [/tex]
Cancelling the minus sign,
[tex] \frac{4}{ 3} [/tex]
is the final answer.
3.
Given,
x= -3, y= -1, z= 4
To solve:
[tex] = \frac{1}{ {x}^{2} } - \frac{x}{y + z} [/tex]
[tex] = \frac{1}{ {( - 3)}^{2} } - \frac{ - 3}{ - 1 + 4} [/tex]
[tex] = \frac{1}{9} - ( - 1)[/tex]
[tex] = \frac{1 + 9}{9} [/tex]
Therefore, the answer is 10/9.
4.
Given,
x= 1/2, y=1, z=1.
To solve:
[tex] = \frac{1}{ {x}^{2} } - \frac{x}{y + z} [/tex]
[tex] = \frac{1}{ ( { \frac{1}{2}) }^{2} } - \frac{ \frac{1}{2} }{1 + 1} [/tex]
Simplifying them ,
[tex]1 \times \frac{4}{1} - \frac{1}{2} \times 2[/tex]
[tex] = 4 - 1[/tex]
Therefore, the answer is 3.
Hope it helps...