Respuesta :

Answer:

A

Step-by-step explanation:

Ver imagen mkumarxx18

a. CD = [tex]\sqrt{13}[/tex], EF = [tex]\sqrt{13}[/tex], CD≅EF

How to find CD & EF ?

If [tex](x_{1}, y_{1})[/tex] & [tex](x_{2}, y_{2})[/tex] are co-ordinates of two points then the distance between this two points = [tex]\sqrt{(x_{2}- x_{1}) ^{2}+ (y_{2}- y_{1} )^{2} }[/tex]

Here, Point C = (0, 4) & Point D = (3, 2)

Then CD = [tex]\sqrt{(3-0)^{2} +(2-4)^{2} }[/tex] = [tex]\sqrt{3^{2} +(-2)^{2} }[/tex] = [tex]\sqrt{9+4}[/tex] = [tex]\sqrt{13}[/tex]

And Point E = (-2, 1) & Point F = (-4, -2)

Then EF = [tex]\sqrt{((-4)-(-2))^{2}+ ((-2)-1)^{2} }[/tex]= [tex]\sqrt{(-2)^{2} +(-3)^{2} }[/tex]= [tex]\sqrt{4+9}[/tex]= [tex]\sqrt{13}[/tex]

Is CD & EF congruent ?

We know that, if two line segment have same length, they are congruent.

Here CD = EF = [tex]\sqrt{13}[/tex]

Since CD & EF have same length, so CD is congruent to EF.

Learn more about congruence of two lines here :

https://brainly.com/question/15580358

#SPJ2

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE