Find the following quotient and express the answer in standard form of a complex number.

Hello, please consider the following.
When you have a complex number in the denominator you need to multiply by its conjugate to eliminate the imaginary component.
The conjugate of 4 - 3i is 4 + 3i, right?
So, let's do it!
[tex]\dfrac{5-7i}{4-3i}=\dfrac{(5-7i)(4+3i)}{(4-3i)(4+3i)}\\\\=\dfrac{5(4+3i)-7i(4+3i)}{4^2-(3i)^2}\\\\=\dfrac{20+15i-28i-21i^2}{16+9}\\\\=\dfrac{20+21-13i}{25}\\\\\large \boxed{=\dfrac{41}{25}-\dfrac{13}{25}i\\}[/tex]
Thank you.
Complex numbers are numbers with real and imaginary parts.
The expression in standard form of a complex number is: [tex]\mathbf{\frac{41}{25}-\frac{13}{25}i}[/tex]
The expression is given as:
[tex]\mathbf{\frac{5 - 7i}{4 - 3i}}[/tex]
Rationalize
[tex]\mathbf{\frac{5 - 7i}{4 - 3i} = \frac{5 - 7i}{4 - 3i} \times \frac{4 + 3i}{4 + 3i}}[/tex]
[tex]\mathbf{\frac{5 - 7i}{4 - 3i} = \frac{20 +15i -28i - 21i.i}{(4)^2 - (3i)^2}}[/tex]
[tex]\mathbf{\frac{5 - 7i}{4 - 3i} = \frac{20 +15i -28i - 21(-1)}{16 - 9(-1)}}[/tex]
[tex]\mathbf{\frac{5 - 7i}{4 - 3i} = \frac{20 +15i -28i + 21}{16 + 9}}[/tex]
Collect like terms
[tex]\mathbf{\frac{5 - 7i}{4 - 3i} = \frac{20 + 21+15i -28i }{16 + 9}}[/tex]
[tex]\mathbf{\frac{5 - 7i}{4 - 3i} = \frac{41-13i }{25}}[/tex]
Split
[tex]\mathbf{\frac{5 - 7i}{4 - 3i} = \frac{41}{25}-\frac{13i }{25}}[/tex]
[tex]\mathbf{\frac{5 - 7i}{4 - 3i} = \frac{41}{25}-\frac{13}{25}i}[/tex]
Hence, the expression in standard form of a complex number is: [tex]\mathbf{\frac{41}{25}-\frac{13}{25}i}[/tex]
Read more about complex numbers at:
https://brainly.com/question/12806985