The median player salary for a professional football team was $446,600 in 2000 and $1,331,948 in 2008. Write a linear equation giving the median salary y in terms of the year x. (Let x = 0 represent 2000.)

Respuesta :

Answer:

[tex]y = \$335931.5 + \$110668.5x[/tex]

Step-by-step explanation:

Given

[tex]Salary\ in\ 2000 = \$446,600[/tex] (Median)

[tex]Salary\ in\ 2008 = \$1,331,948[/tex] (Median)

Required

Determine a Linear Equation

The above question illustrates an Arithmetic Progression (AP)

The nth term of an AP is

[tex]T_n = a + (n - 1) d[/tex]

In this case;

[tex]a = Salary\ in\ 2000 = \$446,600[/tex]

[tex]n = 2008 - 2000 + 1 = 9[/tex]

[tex]T_n = Salary\ in\ 2008 = \$1,331,948[/tex]

Substitute these in the given formula

[tex]\$1,331,948 = \$446,600 + (9 - 1) d[/tex]

[tex]\$1,331,948 = \$446,600 + 8d[/tex]

Collect Like Terms

[tex]\$1,331,948 - \$446,600 = 8d[/tex]

[tex]\$885348 = 8d[/tex]

Divide both sides by 8

[tex]d = \$110668.5[/tex]

The linear equation is generated as follows;

[tex]T_n = a + (n - 1) d[/tex]

In this case;

[tex]a = Salary\ in\ 2000 = \$446,600[/tex]

[tex]d = \$110668.5[/tex]

[tex]T_n = y[/tex]

[tex]n = x[/tex]

Substitute these in the given formula

[tex]y = \$446,600 + (x - 1) * \$110668.5[/tex]

Open bracket

[tex]y = \$446,600 + \$110668.5x - \$110668.5[/tex]

Collect Like Terms

[tex]y = \$446,600 - \$110668.5 + \$110668.5x[/tex]

[tex]y = \$335931.5 + \$110668.5x[/tex]

Hence, the linear equation is

[tex]y = \$335931.5 + \$110668.5x[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE