Solve for x. Evaluate and round your answer to 1 decimal place (tenths place). 10x=3588

Answer:
Step-by-step explanation:
[tex]10^x=3588\\\mathrm{If\:}f\left(x\right)=g\left(x\right)\mathrm{,\:then\:}\ln \left(f\left(x\right)\right)=\ln \left(g\left(x\right)\right)\\\ln \left(10^x\right)=\ln \left(3588\right)\\x\ln \left(10\right)=\ln \left(3588\right)\\\mathrm{Solve\:}\:x\ln \left(10\right)=\ln \left(3588\right):\quad x=\frac{\ln \left(3588\right)}{\ln \left(10\right)}\\\\= 3.55485\\=3.6[/tex]