Respuesta :

Answer:

k = [tex]\frac{25}{12}[/tex]

Step-by-step explanation:

Using the rules of logarithms

log x - log y = log([tex]\frac{x}{y}[/tex] )

log a = log b ⇒ a = b

Given

logk - log(k - 2) = log25, then

log ([tex]\frac{k}{k-2}[/tex] ) = log25, thus

[tex]\frac{k}{k-2}[/tex] = 25 ( multiply both sides by (k - 2)

25(k - 2) = k

25k - 50 = k ( subtract k from both sides )

24k - 50 = 0 ( add 50 to both sides )

24k = 50 ( divide both sides by 24 )

k = [tex]\frac{50}{24}[/tex] = [tex]\frac{25}{12}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE