Answer:
1 second later the vehicle's velocity will be:
[tex]v(1)= 6\,\,\frac{m}{s} \\[/tex]
5 seconds later the vehicle's velocity will be:
[tex]v(5)=14\,\,\frac{m}{s}[/tex]
Explanation:
Recall the formula for the velocity of an object under constant accelerated motion (with acceleration "[tex]a[/tex]"):
[tex]v(t)=v_0+a\,t[/tex]
Therefore, in this case [tex]v_0=4\,\,\frac{m}{s}[/tex] and [tex]a=2\,\,\frac{m}{s^2}[/tex]
so we can estimate the velocity of the vehicle at different times just by replacing the requested "t" in the expression:
[tex]v(t)=v_0+a\,t\\v(t)=4+2\,\,t\\v(1)=4+2\,(1) = 6\,\,\frac{m}{s} \\v(5)=4+2\,(5)=14\,\,\frac{m}{s}[/tex]