Respuesta :

Answer:

[tex]x = 1 - log_{2}(5) [/tex]

Step-by-step explanation:

[tex] {2}^{x + 2} = 9 ( {2}^{x} ) - 2[/tex]

Using the rules of indices

That's

[tex] {x}^{a + b} = {x}^{a} \times {x}^{b} [/tex]

So we have

[tex] {2}^{x + 2} = {2}^{x} \times {2}^{2} = 4( {2}^{x} )[/tex]

So we have

[tex]4( {2}^{x}) = 9( {2}^{x} ) - 2[/tex]

Let

[tex] {2}^{x} = y[/tex]

We have

4y = 9y - 2

4y - 9y = - 2

- 5y = - 2

Divide both sides by - 5

[tex]y = \frac{2}{5} [/tex]

But

[tex] {2}^{x} = \frac{2}{5} [/tex]

Take logarithm to base 2 to both sides

That's

[tex] log_{2}( {2}^{x} ) = log_{2}( \frac{2}{5} ) [/tex]

[tex] log_{2}(2) ^{x} = x log_{2}(2) [/tex]

[tex] log_{2}(2) = 1[/tex]

So we have

[tex]x = log_{2}( \frac{2}{5} ) [/tex]

Using the rules of logarithms

That's

[tex] log( \frac{x}{y} ) = log(x) - log(y) [/tex]

Rewrite the expression

That's

[tex]x = log_{2}(2) - log_{2}(5) [/tex]

But

[tex] log_{2}(2) = 1[/tex]

So we have the final answer as

[tex]x = 1 - log_{2}(5) [/tex]

Hope this helps you

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE