Respuesta :
Answer:
288π cm³, 904.32 cm³, and 904.778683 cm³
Step-by-step explanation:
The volume of a sphere can be found using the following formula.
[tex]V=\frac{4}{3} \pi r^3[/tex]
We are given the diameter, so we must find the radius.
The radius is half of the diameter.
r= d/2
The diameter is 12 cm.
r= 12 cm/2
r= 6 cm
The radius is 6 centimeters. Let's return to the formula and substitute 6 cm in for r.
[tex]V=\frac{4}{3} \pi (6cm)^3[/tex]
Evaluate the exponent.
[tex](6 cm)^3= 6 cm * 6 cm * 6cm = 36 cm^2 * 6cm= 216 cm^3[/tex]
[tex]V=\frac{4}{3} \pi * 216 cm^3[/tex]
Multiply 4/3 and 216 cm^3
[tex]V= (\frac{4}{3} * 216 cm^3)\pi[/tex]
In terms of pi:
[tex]V= 288\pi cm^3[/tex]
Using 3.14 as pi:
[tex]V= 288 \pi cm^3[/tex]
[tex]V= (288 * 3.14) cm^3[/tex]
[tex]V= 904.32 cm^3[/tex]
Using 3.14159265 as pi:
[tex]V= 288 \pi cm^3[/tex]
[tex]V= (288 * 3.14159265) cm^3[/tex]
[tex]V=904.778683 cm^3[/tex]
The volume of the sphere is 288π cm³, 904.32 cm³, and 904.778683 cm³
Answer:
Volume of sphere by formula is V= 4/3πr^3
Since d= 12
Then r = d/2
Radius = diameter / 2
r = 12/2
r = 6
V = 4/3 x 22/7 x 6^3
V = 1.33 x 3.14 x 216
V = 902.1cm^3....
Thanks