Respuesta :

Answer:

[tex]0+6\sqrt{2}i[/tex]

or just [tex]6\sqrt{2}i[/tex]

Step-by-step explanation:

[tex]\sqrt{-72}[/tex] does not have a real part, it is a pure imaginary number.

Let's simplify.

First step:

[tex]\sqrt{-1}=i[/tex] is the imaginary unit.

So we have that we can write [tex]\sqrt{-72}=i \sqrt{72}[/tex].

Second step:

Let's simplify the factor [tex]\sqrt{72}[/tex] by looking for perfect squares of [tex]72[/tex].

[tex]72=2(36)=2(6^2)[/tex]

So [tex]36[/tex] is a perfect square because it can be written as [tex]6^2[/tex].

[tex]\sqrt{-72}[/tex]

[tex]i \sqrt{72}[/tex]

[tex]i \sqrt{2 \cdot 6^2}[/tex]

[tex]i \sqrt{2} \sqrt{6^2}[/tex]

[tex]i \sqrt{2} 6[/tex]

[tex]6 \sqrt{2}i[/tex]

We could write this as [tex]0+6\sqrt{2}i[/tex].

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE