Answer:
The wait time is [tex]t_w = 3.4723 \ s[/tex]
Explanation:
From the question we are told that
The distance of the hot air balloon above the ground is [tex]z = 50 \ m[/tex]
The distance of the hot air balloon from the target is [tex]k = 100 \ m[/tex]
The speed of the wind is [tex]v = 15 \ m/s[/tex]
Generally the time it will take the balloon to hit the ground is
[tex]t = \sqrt{ \frac{2 * z }{g} }[/tex]
where g is acceleration due to gravity with value [tex]g = 9.8 m/s^2[/tex]
substituting values
[tex]t = \sqrt{ \frac{2 * 50 }{9.8} }[/tex]
[tex]t = 3.194 \ s[/tex]
Now at the velocity the distance it will travel before it hit the ground is mathematically represented as
[tex]d = v * t[/tex]
substituting values
[tex]d = 15 * 3.194[/tex]
[tex]d = 47.916 \ m[/tex]
Now in order for the balloon to hit the target on the ground it will need to travel b distance on air before the balloonist drops it and this b distance can be evaluated as
[tex]b = k - d[/tex]
substituting values
[tex]b =100 -47.916[/tex]
[tex]b = 52.084 \ m[/tex]
Hence the time which the balloonist need to wait before dropping the balloon is mathematically evaluated as
[tex]t_w = \frac{b}{v}[/tex]
substituting values
[tex]t_w = \frac{52.084}{15}[/tex]
[tex]t_w = 3.4723 \ s[/tex]