Use an appropriate series to find Taylor series of the given function centered at the indicated value of a. Write your answer in summation notation.

sinx, a= 2π

Respuesta :

Answer:

The Taylor series is   [tex]$\sum_{n=0}^{\infty} [\frac{(-1)^n}{(2n +1)!} (x)^{2n+1}][/tex]

Step-by-step explanation:

From the question we are told that

      The function is  [tex]f(x) = sin (x)[/tex]

This is centered at  

       [tex]a = 2 \pi[/tex]

Now the next step is to represent the function sin (x) in it Maclaurin series form which is  

          [tex]sin (x) = \frac{x^3}{3! } + \frac{x^5}{5!} - \frac{x^7}{7 !} +***[/tex]

=>       [tex]sin (x) = $\sum_{n=0}^{\infty} [\frac{(-1)^n}{(2n +1)!} (x)^{2n+1}][/tex]

   Now since the function is centered at  [tex]a = 2 \pi[/tex]

We have that

           [tex]sin (x - 2 \pi ) = (x-2 \pi ) - \frac{(x - 2 \pi)^3 }{3 \ !} + \frac{(x - 2 \pi)^5 }{5 \ !} - \frac{(x - 2 \pi)^7 }{7 \ !} + ***[/tex]

This above equation is generated because the function is not centered at the origin but at [tex]a = 2 \pi[/tex]

           [tex]sin (x-2 \pi ) = $\sum_{n=0}^{\infty} [\frac{(-1)^n}{(2n +1)!} (x - 2 \pi)^{2n+1}][/tex]

Now due to the fact that [tex]sin (x- 2 \pi) = sin (x)[/tex]

This because  [tex]2 \pi[/tex] is a constant

   Then it implies that the Taylor series of the function centered at [tex]a = 2 \pi[/tex] is

             [tex]$\sum_{n=0}^{\infty} [\frac{(-1)^n}{(2n +1)!} (x)^{2n+1}][/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE